## **ITER Central Solenoid**

distant of

Building the World's Largest Pulsed Superconducting Magnet





IS TON

KONECRANES

### What is ITER?



- World's largest scientific experiment being built by a partnership of 35 nations
- Plasma physics experiment to demonstrate the technological and scientific feasibility of magnetic fusion

### What Will ITER Do?

Photo credit: ITER Organization, May 2021



- Produce 500 MW of power, which is 10 times the input heating power
- Demonstrate the integrated operation of technologies for a fusion power plant
- Achieve a deuterium-tritium plasma in which the reaction is sustained through internal heating
- Test tritium breeding

### ITER Central Solenoid The heart of the international fusion energy device

The Central Solenoid is the heart of ITER. The 5-story, 1,000-ton magnet will drive 15 million amperes of electrical current in ITER's fusion plasma for stabilization. General Atomics (GA) is fabricating the modules in a dedicated facility in San Diego, CA.

![](_page_3_Picture_2.jpeg)

#### **CENTRAL SOLENOID ASSEMBLY**

- 6 modules
- Height: 59 feet (17.7 meters)
- Diameter: 14.1 feet (4.3 meters)
- Weight: 1,000 tons (900 tonnes)
- Peak field strength: 13.1 Tesla
- Stored energy capacity: 5.5 gigajoules

#### EACH MODULE

- 250,000 lb. (110-tonne)
- Height: 7 feet (2.1 meters)
- Diameter 13.6 feet (4.1 meters)
- 3.6 miles (5.8 kilometers) of steel-jacketed conductor
- Conductor wound into 40 layers

### Central Solenoid Module Fabrication Flows through 10 custom-built process stations

#### It takes 22-24 months to manufacture each coil and prepare it for full current testing at 4.7 K

![](_page_4_Picture_2.jpeg)

Conductor Receiving Inspection

![](_page_4_Picture_4.jpeg)

Winding

![](_page_4_Picture_6.jpeg)

Joint & Terminal Preparation

![](_page_4_Picture_8.jpeg)

Stack & Join/Helium Penetrations

![](_page_4_Picture_10.jpeg)

**Reaction Heat Treatment** 

![](_page_4_Picture_12.jpeg)

**Turn Insulation** 

![](_page_4_Picture_14.jpeg)

**Ground Insulation** 

![](_page_4_Picture_16.jpeg)

Vacuum Pressure Impregnation

![](_page_4_Picture_18.jpeg)

**Turn Over Tool** 

![](_page_4_Picture_20.jpeg)

**Helium Piping** 

![](_page_4_Picture_22.jpeg)

**Final Test** 

### **Central Solenoid Fabrication Facility**

![](_page_5_Picture_1.jpeg)

- 6,000 sq. meters of temperature-controlled production space
- 0.6 meters thick concrete floors
- 1MW diesel generator
- 1MW cooling tower

- Liquid argon, liquid nitrogen, & liquid helium systems
- Gantry & bridge cranes
- Two 100+ horsepower air compressors

![](_page_6_Picture_0.jpeg)

![](_page_6_Picture_1.jpeg)

Production Facility Under Construction

![](_page_6_Picture_3.jpeg)

Completed High Bay

![](_page_6_Picture_5.jpeg)

Final Test Facility

## Station Receiving the Conductor

![](_page_7_Picture_1.jpeg)

One of 54 spools of conductor received at the Central Solenoid production facility

![](_page_7_Picture_3.jpeg)

Unloading a conductor spool from the delivery

![](_page_7_Picture_5.jpeg)

Conductor spools stored prior to winding

### Moving Module Between Stations

![](_page_8_Picture_1.jpeg)

Moving 250,000 lb. (110-tonne) module in facility requires air transporter

# 2 Winding the Module

![](_page_9_Picture_1.jpeg)

Each Central Solenoid module is fabricated from approximately 6,000 meters of niobiumtin (Nb<sub>3</sub>Sn) conductor. The production module segment here is wound from 900 meters of conductor into 14-turn pancakes with six layers.

![](_page_10_Picture_0.jpeg)

![](_page_10_Picture_1.jpeg)

Two spools loaded for winding

### <sup>Station</sup> Joint and Terminal Preparation

![](_page_11_Picture_1.jpeg)

Wound six-layer submodules ready for terminal preparation

![](_page_11_Picture_3.jpeg)

Terminal lead nearing completion

![](_page_11_Picture_5.jpeg)

Conductor strands prior to chrome stripping

![](_page_11_Picture_7.jpeg)

Conductor strands after chrome stripping

Station **4** 

## Joining Coil Segments Together

![](_page_12_Picture_2.jpeg)

Two hex submodules prepared prior to joining

![](_page_12_Picture_4.jpeg)

Module with six completed splice joints

![](_page_12_Picture_6.jpeg)

Splicing the conductor cable together similar to splicing a rope

![](_page_12_Picture_8.jpeg)

Welding stainless steel cover over the splice joint

![](_page_13_Picture_0.jpeg)

### Six ITER CS modules in different fabrication stages:

- 1 Post resin injection on VPI station
- 2 Piping complete and ready for final test
- **3** Ground insulation

- 4 Post heat treatment
- 5 Stack and Join
- 6 After thermal cycle and power testing

![](_page_14_Picture_0.jpeg)

# Station Reaction Heat Treatment

![](_page_15_Picture_1.jpeg)

Placing module in furnace for heat treatment at 650°C (1200°F)

![](_page_15_Picture_3.jpeg)

Technician inspecting module after heat treatment

![](_page_15_Picture_5.jpeg)

Furnace closed for module heat treatment

#### Station **6**

### **Turn Insulation Station**

![](_page_16_Picture_2.jpeg)

Turn insulation station structure lifts and raises 110-tonne module and releases individual turns for insulation wrapping

![](_page_16_Picture_4.jpeg)

Turn insulation of module nearing completion

![](_page_16_Picture_6.jpeg)

Automated heads wrapping fiberglass tape around the conductor

## 7 Ground Insulation Station

![](_page_17_Picture_1.jpeg)

Helium inlet pipe with ground insulation

![](_page_17_Picture_3.jpeg)

Technician inspects helium outlet pipe insulation on a completely insulated module

Module during ground insulation application

#### Station **8**

### Vacuum Pressure Impregnation

![](_page_18_Picture_2.jpeg)

VPI mold being placed over the module in preparation for resin injection

![](_page_18_Picture_4.jpeg)

Module mold alongside resin tanks and mixing pump system for injecting 3,500 liters of resin to encapsulate the module

![](_page_18_Picture_6.jpeg)

Completed module after resin injection

### **Turnover Tool**

![](_page_19_Picture_1.jpeg)

Modules require rotation to exchange bases under coil and allow access for piping installation

![](_page_19_Picture_3.jpeg)

![](_page_19_Picture_4.jpeg)

Turnover of module in process

## Helium Piping

**Station** 

9

![](_page_20_Picture_1.jpeg)

Technician applying insulation to piping on inner bore

![](_page_20_Picture_3.jpeg)

Thirty-nine helium pipes welded and insulated to provide the supply and return for supercritical helium at 4.7 K

![](_page_20_Picture_5.jpeg)

Module after piping installed

# StationFinal Testing

![](_page_21_Picture_1.jpeg)

Module in final test chamber with camera system installed ready to begin high voltage testing

![](_page_22_Picture_0.jpeg)

used for cooling the CS modules to 4.7 K

![](_page_22_Picture_2.jpeg)

Module in final test chamber

![](_page_22_Picture_4.jpeg)

50kA magnet charging power supply with 1GJ fast discharge system including 7kV DC switch and dump resistor for full-current testing of CS modules

### Preparing module for shipment

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

Preparation for Shipment

![](_page_23_Picture_6.jpeg)

### Loading module for transport

![](_page_24_Picture_1.jpeg)

#### Lowering module into the 24-axle super-heavy trailer

![](_page_24_Picture_3.jpeg)

Setting the module inside the cradle

![](_page_24_Picture_5.jpeg)

0 CONTRACTORS CARGO CO.

# Transporting module to port in Houston, TX

Houston

![](_page_26_Picture_0.jpeg)

![](_page_27_Picture_0.jpeg)

## If you have unique, precise superconducting magnet fabrication needs, contact us:

John Smith, Director of Engineering and Projects John.Smith@ga.com | (858) 909-5276 | San Diego, California USA www.ga.com/magnetic-fusion/iter-cs